
Landsat 7
Mission Data and Data Pointer BCH Decoder

Prototype Description

1.  OBJECTIVE AND SCOPE

1.1 PURPOSE

     The BCH prototype had three purposes.  The first was to understand
and develop BCH error detection and correction (EDAC).  The second was to
determine if the minimum processing rate could be achieved using a
software-only approach.  The third was to determine the optimum
grouping and lookup table size given the trade-off between the memory
requirements and the increased speed of the larger sizes.  This trade-off is
discussed more thoroughly in Section 10.1.

1.2 DESCRIPTION OF PROBLEM

In the decoding process there are essentially three tasks.  First, since
the incoming data is interleaved within the Channel Access Data Unit
(CADU), this data must be accessed in such a way that reverses the
interleaving.  Second, it must be determined if the codeword contains
errors, and if it does, the error locations must be calculated.  Third, the bits
in error must be corrected and the corrected codeword must again be
checked for errors.  If the corrected codeword contains errors, this
indicates the original codeword contained more than three errors and is
therefore uncorrectable.

1.3 GOALS

        The goal of the BCH decoder prototype was to process error-free data
at the minimum rate of 7.5 megabits per second using C code in a UNIX
environment.  The prototype had to be capable of detecting and correcting
up to 3 errors in 1022 bits for the mission, and up to 3 errors in 31 bits for
the pointer.
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2.  OVERVIEW

2.1 BCH ERROR CONTROL FIELDS

        Prior to transmission from the Landsat 7 satellite to the Landsat
Ground Station (LGS), 30 check bits are calculated and appended to each
mission data field and 15 check bits are calculated and appended to each
pointer data field.  The check bits are calculated based on 992 original
mission data bits, making a total mission codeword length of 1022, and 16
original pointer data bits, making a total pointer codeword length of 31.
The calculations are performed by the BCH encoder, which is described
briefly in Section 2.3.

2.2 BCH CODE BLOCK DESCRIPTION

      Each CADU (shown in figures 1 and 2) contains 1040 bytes of data.  The
mission data begins at byte 12 and continues until byte 1004 when the
mission check bits begin.  At byte 1034, the pointer data begins and
continues until byte 1036 when the pointer check bits begin.  The pointer
check bits end with byte 1037.  Thus the entire BCH code block contains
1026 bytes of data.

      In the mission data section, from byte 12 through byte 1033, there are
a total of eight interleaved mission codewords (see Figure 2).  The first
byte contains the most significant bit of each of the eight codewords.  The
second byte contains the next most significant bit of each codeword.  This
pattern continues throughout the mission data section ending with byte
1033 containing the least significant bit (the last check bit) of each
codeword.  Bit interleaving is discussed more thoroughly in Section 2.2.

      The pointer codeword begins at byte 1034 and is not interleaved. The
most significant bit of the pointer codeword begins immediately following
the mission data section and continues for the next 30 bits ending in byte
1037 with the least significant bit and an extra bit which is ignored.
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Figure 1:  LPS Data Transition / Processing Stages

Notes:
1.  Clear fields: Outputs of last process
2.  Shaded Fields:  Processing completed
3.  Acronyms:
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2.3 BCH ENCODING OF LANDSAT 7 DATA

       The BCH Encoder generates the check bits for a binary message by
performing polynomial division on the binary message with a generator
polynomial.  The check bits are the remainder of the polynomial division.
The generator polynomial for the mission data takes a binary message of
992 bits and produces 30 check bits.  The polynomial is:

      g(x) = X30+X28+X23+X21+X19+X16+X12+X8+X4+X+1

     The generator polynomial for the pointer data takes a binary message
of 16 bits and produces 15 check bits.  The polynomial is:

       g(x) = X15+X11+X10+X9+X8+X7+X5+X3+X2+X+1

The BCH encoder is described in greater detail in the BCH encoder design
memo finalized April, 1994.

2.4 BCH DECODING OF LANDSAT 7 DATA

      The BCH decoder first creates several lookup tables which are used
later for error detection.  Next it reads the CADU and transposes it, which
essentially reverses the interleaving.  It then examines each codeword
from the CADU several bits at a time (Step 1), and pulls from a lookup
table values that are indexed by the bits examined.  These extracted
values are then exclusive-or'd and the result is three syndromes.  If these
syndromes are 0, there are no errors in the codeword.  Otherwise, these
syndromes are used to traverse a decision tree (Step 2) to arrive at the
coefficients of an error locator polynomial.  Next, all the values of a Galois
Field (GF) table are tried as possible roots to make this error locator
polynomial equal to 0 (Step 3).  The index of any value that succeeds is the
location of an error in the codeword.  This bit is then flipped and the
codeword is checked again as above for errors.

2.5 ALTERNATE APPROACHES CONSIDERED
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There were two approaches considered for obtaining the syndromes
in Step 1 of the BCH decoding algorithm.  One goal of the prototype was to
learn if the second approach would be faster than the first approach, as
expected.  The second approach also had an important variable built into it
and the prototype was used to find the best value for that variable.

     The first approach involves a GF table that has the same number of
entries as bits in a codeword.  Each entry is matched to a particular bit.
For every bit set to 1 in the incoming codeword, the corresponding entry
from the table is extracted and all extracted values are exclusive- or'd
together.  The final result is the three syndromes.

       The second approach achieves the same result but uses a partial sums
lookup table to do much of the work ahead of time.  Prior to reading any
incoming codewords, the extraction and exclusive-or'ing for different
combinations of bits are calculated and the results stored in this table.
obviously, the more bit combinations that are calculated ahead of time, the
faster the processing will be once the data is actually being read because
there will be less real-time exclusive-or'ing.  However, the more values
that are stored, the greater the memory requirements, and the greater the
access time for extracting values from a very large table. The prototype
was used to discover the most efficient amount of prior calculation.  For
more information on the use of a partial sums lookup table, see Section 7.1.
For more information on the trade-off between memory and speed, see
Section 10.1.

3.  ASSUMPTIONS

3.1 MISSION & POINTER BCH DECODER PROTOTYPE

For the purposes of the prototype, it was understood that the
incoming data would not be changed in any way.  This means that bit
errors were not corrected in the actual data and that the interleaved data
was not deinterleaved.  For the EDAC process, the incoming data did have
to be accessed in such a way that it was virtually deinterleaved, but the
actual data was not changed.

It was also understood that the incoming data contained mission
codewords that were 1022 bits in length which includes 30 check bits. This
means that the original message length was 992 bits.  The BCH encoding
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and decoding algorithms used, however, call for an original message length
of 993 bits.  To overcome this inconsistency, it was agreed that the BCH
decoder would add a cleared fill bit (set to 0) to the most significant bit
position of the incoming mission codeword prior to EDAC processing.

3.2 INPUT TEST DATA

       GTSIM provided several test data files with various combinations of
bit errors.  There were files containing CADU's with:  clean data, data with
one error in each of most significant and least significant bits for both
mission & pointer, data with two errors in each of most significant and
least significant bits for both mission & pointer, and data with three errors
in each of most significant and least significant bits for both mission and
pointer.  All test data had to conform to the CCSDS format noted in Data
Format Control Book.

4.  BCH DECODER INPUTS AND FORMATS

4.1 MISSION AND POINTER DATA

The BCH decoder prototype processes GTSIM-generated data in the
form of binary files containing CADU's which contain interleaved
codewords.  Each CADU (shown in Figure 2) contains eight mission
codewords and one pointer codeword.  Specifically:

An incoming mission codeword contains 992 message bits followed
by 30 check bits; 1022 bits in total.  There are eight mission
codewords interleaved in each CADU, resulting in a total mission code
block size of 8176 bits or 1022 bytes.  The block of mission
codewords begins at byte 12 and ends with byte 1033.

An incoming pointer codeword contains 16 message bits followed by
15 check bits, 31 bits in total.  There is one pointer codeword in each
CADU and it begins immediately after the mission data block at byte
034 and ends with byte 1037.
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4.2 BCH ERROR CONTROL BIT INTERLEAVING

   Interleaving is a way of combining bits from several bytes that results in
minimizing the overall damage of noise.  When interleaving with a depth
of eight, the most significant bits of eight bytes are layed out first, followed
by the next most significant bits of those same eight bytes in the same
order as the first.  This continues until the least significant bits of all eight
bytes have been layed out in order.  An example of this is shown in Figure
2.  The depth of eight refers to the number of codewords that are
combined.

     Interleaving spreads the impact of noise so that it is less likely to result
in the destruction of an entire codeword.  What is meant by destruction is
that a codeword can no longer be corrected by the EDAC algorithm.  If a
CADU were arranged without interleaving so that one entire codeword
followed another entire codeword, and if the EDAC algorithm, as this one,
could correct a maximum of three errors in a codeword, then noise
covering four or more bits would destroy a codeword.  If the codewords
are interleaved, however, it would take noise covering more than 24 bits
to destroy one codeword.

5.  BCH DECODER OVERALL DESIGN APPROACH

5.1 INITIALIZATION

      In the initialization phase of Step 1, which occurs only once, several
tables are created and filled.  The largest tables are the partial sums
lookup tables for the mission and pointer.  These tables are used when
calculating the syndromes in Step 1 and are explained in greater detail in
Section 7.1.  The other tables created aid in addition, multiplication,
division, powers of 3 and 5, and inverses using GF algebra which is used
heavily in Step 2.  GF algebra is explained in greater detail in Appendix,
Section 1.  Two additional tables are created that correspond directly to the
GF values.  One of these tables contains the actual GF values and the other
one is indexed by these values and contains the indices of the first table as
its values.  The second table is essentially an inverse of the first.  This
table significantly speeds the process of obtaining the index value of a
particular entry in the GF table, something that is done frequently in Step
2.  More details on table generation can be found in Section 7.1.
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5.2 STEP 1 - COMPUTATION OF SYNDROMES

       After initialization, the input data is read.  Since the input data is in
the form of interleaved CADU's, the first thing to do is to deinterleave the
CADU.  Actual deinterleaving is not necessary, but the CADU is copied and
transposed in such a way that interleaving is eliminated.  Next, three
syndromes are calculated for each of the eight codewords in the CADU, one
at a time.  The syndromes are calculated in the following way:  a codeword
is examined by groups of bits (either 4, 8 or 16 -- set at compilation time).
These groups of bits are used as indices into the partial sums lookup table
and all indexed entries are extracted and exclusive-or'd together.  The final
result is the three syndromes, which is the output of Step 1 and the value
that is passed to Step 2.  If the three syndromes are all 0, however, this
indicates an error-free codeword and the process skips steps 2 and 3 and
begins looking at the next codeword.  After each codeword in the CADU is
fully processed, including the detection and correction of any errors, the
next CADU is transposed and the process continues until all CADU's have
been checked for errors.

5.3 STEP 2 - DERIVATION OF ERROR LOCATOR POLYNOMIAL

      Step 2 uses the values of these three syndromes, and all the GF algebra
tables, to traverse through a decision tree, ending at a leaf which contains
the coefficients of the error locator polynomial.  The decision tree is shown
in Figure 3.  More details of this tree-traversal are given in Section 8.  The
coefficients of the error locator polynomial are the output of Step 2 and are
used in Step 3.
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5.4 STEP 3 - CALCULATION AND CORRECTION OF ERROR LOCATIONS

     Step 3 uses the error locator polynomial to compute the error locations
in the received codeword.  The error locator polynomial is set equal to 0
and each of the entries in the GF table is tested as a possible root to the
equation.  This process, the Chien Search, is discussed more thoroughly in
Section 9.  The index of any entry of the GF table that satisfies the equation
is the location of a bit error in the codeword.  Finally, the erroneous bit(s)

10 November 18, 1994



are flipped and Step 1 is executed again to calculate the syndromes for the
corrected codeword.  The codeword is error-free if all three syndromes are
0.  If the syndromes are not all 0, the codeword is uncorrectable which
means there were more than three errors.

6.  PERFORMANCE RESULTS

      One of the goals of the BCH decoder prototype was to decide on the
best grouping size for both the mission and pointer data.  Several tests
were performed on an SGI Challenge L machine using error-free data and
different combinations of grouping sizes (4, 8 or 16) for both mission and
pointer data.  Averages were taken and the results are shown below.  The
best grouping size for the mission data was definitely 8.  Although there
are clear advantages to using a partial sums lookup table with a large
grouping size (see Section 7.1), there are disadvantages in using a very
large table (see Section 10.1).  The best grouping size for the pointer data
was 16, although the differences here were less significant.  The best
combination is highlighted with an asterisk.

                     Grouping Size Test

            Pointer         Mission Megabits
            Grouping Grouping /Second
           --------------------------------------------
              4                 4               12.49
              4                 8               14.67
              4              16                 7.17
              8                 4               12.54
              8                 8               14.69
              8              16                 7.10
            16                 4               12.56
            16                 8               14.77*
            16              16                 7.16

       Tests were also performed (on error-free data, with the fastest
grouping combination) to determine the better optimization level between
2 and 3.  The optimization level can be specified during compilation of C
code on Unix-based machines such as the SGI Challenge L.  Optimization
level 2 produced the fastest code.
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                             Optimization Test

                       Optimization    Megabits
                       Level           /Second
                     -------------------------------
                       2               14.77*
                       3               13.45

      Finally, using the grouping sizes of 8 for the mission and 16 for the
pointer, and using optimization level 2, the following benchmark tests
were performed.  The data included 1,2, and 3 errors in the least and most
significant bit positions.  The worst case was when there were 3 errors in
the most significant bit positions.  This is because in Step 3, the Chien
Search algorithm searches the GF table for roots to the error locator
polynomial starting at the index correlating to the least significant bit
position (see Section 9).

                        Benchmark Results

                      Number          Megabits
                      Errors          /Second
                    --------------------------
                    0               14.77
                    1(LSB)         10.43
                    2(LSB)             9.64
                    3(LSB)             9.51
                    1(MSB)          10.31
                    2(MSB)               .45
                    3(MSB)               .31

7.  BCH DECODER STEP 1 DESIGN DETAIL

7.1 TABLE GENERATION

       The first task in the BCH decoder prototype is the generation of all the
tables -- there are 16.  For both mission and pointer data, there are the GF
tables and their two inverse tables, the partial sums lookup tables, and all
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the GF algebra tables (addition, multiplication, inverses, powers of 3 and 5,
and division).

       The values to be placed in the GF table for both the mission and the
pointer are the elements of the GF within 210 and 25, respectively. These
numbers were generated separately from the BCH code and placed in two
ASCII files to be read by the BCH code.  More details on how these
numbers are generated using primitive polynomials can be found in
Appendix, Section 4.  The GF inverse tables are constructed merely by
reversing the entries and indices of the GF tables.  For example if 11111
(binary) is located at index 15 (decimal) in the pointer GF table, then
01111 (binary representation of 15) can be found at index 31 (decimal
representation of 11111) in the pointer GF inverse table.  The GF table and
the GF inverse table for the pointer are shown below.  The GF inverse
tables allow you quickly to access the index of any entry in the GF table,
something that is done frequently in Step 2.  The index of an entry in the
GF table is also known as the "power of alpha" of that entry.  The GF tables
and their inverse tables are needed prior to calculating the values for the
partial sums lookup tables and the GF algebra tables.  More details on how
the GF algebra tables are calculated are provided in Appendix, Section 5.3.

     GF Table                GF Inverse Table

      00001                           11111
      00010                           00000
      00100                           00001
      01000                           10010
      10000                           00010
      00101                           00101
      01010                           10011
      10100                           01011
      01101                           00011
      11010                           11101
      10001                           00110
      00111                           11011
      01110                           10010
      11100                           01000
      11101                           01100
      11111                           10111
      11011                           00100
      10011                           01010
      00011                           11110
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      00110                           10001
      01100                           00111
      11000                           10110
      10101                           11100
      01111                           11010
      11110                           10101
      11001                           11001
      10111                           01001
      01011                           10000
      10110                           01101
      01001                           01110
      10010                           11000
      00000                           01111

     The partial sums lookup tables are created using the GF tables and the
grouping size, which is decided at compile time.  To use an example, if the
pointer grouping size is 16, all permutations of 16 bits (there are 216 of
them) are processed as though they were the first 16 bits of the pointer
codeword.  In other words, for all bit positions that contain a '1', the
corresponding entries in the GF table are extracted and exclusive-or'd.  The
result is then entered in the lookup table, indexed by the bit permutation
that generated it.  All permutations of the 16 bits are processed in this
way.  Finally, all permutations of the remaining 15 bits (of the 31 bits in
the pointer codeword) are processed in the same way.  If the pointer
grouping size were four, there would be seven groups of the permutations
of four bits, and one group of the permutations of three bits.  A sample GF
table and pointer lookup table for a grouping size of four is shown in
Section 7.4.

      The values stored in the partial sums lookup table are actually
concatenations of three syndromes, S1, S3, S5.  For the mission data, the
syndromes are each 10 bits so the three syndromes are stored in a 32-bit
integer.  For the pointer data, the syndromes are each 5 bits so the three
syndromes are stored in a 16-bit integer.  The values stored in the table
are calculated differently for each syndrome.  For S1, the corresponding
values are extracted directly from the GF table.  For instance, if there was a
'1' in bit position 30 of the pointer codeword, the entry in the GF table
indexed at 30 would be extracted and exclusive-or'd.  For S3, the bit
position of the '1' in the codeword is multiplied by 3 and it is this value
that is used as an index into the GF table when extracting and exclusive-
or'ing.  For S5, the bit position is multiplied by 5 and treated similarly.  For
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both S3 and S5, if the multiplied bit position results in an index into the GF
table that is out of the range of the GF table, the index is essentially
'wrapped around' until the index falls within the range of the table.
Modulo 31 (for the pointer) and Modulo 1023 (for the mission) is taken of
the index, which reduces it to a value within the correct range.  For
instance, if S5 were being sought for a '1' in bit position 30 of the pointer
codeword, 30 would be multiplied by 5 resulting in 150.  Now 150 would
be divided by 31, and the remainder would be used as an index into the GF
table.  The remainder is 26, which is within the range of the GF table.  The
entry indexed at 26 in the GF table would be extracted and exclusive-or'd.
In this way, S1, S3 and S5 are calculated for each permutation of the
grouping size, and the three values are concatenated and stored in the
partial sums lookup table indexed by the permutation.

        Using  partial sums lookup tables, much of the exclusive-or'ing
necessary for deriving the syndromes is pre-calculated.  In the example
above with a grouping size of 16 for the pointer, there are 30 possible
exclusive-or's that would be necessary if the pointer codeword were all 1's.
With the partial sums lookup tables, however, 29 of these would be done
during initialization, leaving only one exclusive-or to be done real-time.

7.2 DATA ACCESS

      After the tables are initialized, the interleaved codewords must be
accessed in the CADU.  In order to do this, a structure is declared that has
eight one-bit fields in it each of which can be accessed separately.  This
structure is then sequentially overlayed on each of the first eight bytes in
the CADU, and the first bit of each of these bytes is placed in the first
element of an array which will contain the eight mission codewords.  The
second bit from each of these bytes is placed in the second element of the
mission codeword array and the third bit is placed in the third element of
the array.  This continues until the last bit from the first eight bytes has
been place in the last element of the mission codeword array.  Now the
mission codeword array contains the first byte for all eight codewords.
Next the bit structure is sequentially overlayed on each of the second eight
bytes in the CADU and this results in the second byte of each of the eight
codewords being placed in the mission codeword array.  This process
continues until the entire CADU has seen copied into the mission codeword
array completing each of the eight mission codewords.  The pointer
codeword is also copied to a variable.
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7.3 SYNDROME CALCULATION

       Now the syndromes are calculated for each of the eight mission
codewords and for the pointer codeword.  This entails dividing the
codewords into their various grouping sizes and extracting from the lookup
tables those values that are indexed by the grouping of the codeword.  All
extracted values are exclusive-or'd and the result is the three syndromes
contained in one 16-bit integer (for the pointer) and in one 32-bit integer
(for the mission).  If the three syndromes are 0, the codeword is without
errors and processing stops for this codeword.  If the syndromes are not all
0, the codeword contains at least one error and the syndrome values are
passed to Step 2 to calculate the coefficients of the error locator
polynomial.

7.4 SAMPLE SYNDROME CALCULATION

     Shown below is the Pointer Lookup Table with a grouping size of four,
which means the codeword is examined four bits at a time.  Also shown
are the indices into the table for each section of the pointer codeword.
Since the grouping size is four, there are eight sections of the table.  Seven
sections are indexed by four bits; the last section is indexed by three bits.

index         Pointer Lookup Table      Bits Referenced
-------       ----------------------      ----------------
0000          0000000000000000       First four bits
0001          0101100110001110
0010          1011010101110110
0011          1110110011111000
0100          0100111001110000
0101          0001011111111110
0110          1111101100000110
0111          1010001010001000
1000          1001010110101110
1001          1100110000100000
1010          0010000011011000
1011          0111100101010110
1100          1101101111011110
1101          1000001001010000
1110          0110111010101000
1111          0011011100100110
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0000          0000000000000000          Second four bits
0001          0111110100101010
0010          1111010001010110
0011          1000100101111100
0100          1100111100000100
0101          1011001000101110
0110          0011101101010010
0111          0100011001111000
1000          1011111011010100
1001          1100001111111110
1010          0100101010000010
1011          0011011110101000
1100          0111000111010000
1101          0000110011111010
1110          1000010110000110
1111          1111100010101100

0000          0000000000000000          Third four bits
0001          0011010111001000
0010          0110001001101000
0011          0101011110100000
0100          1100000010011100
0101          1111010101010100
0110          1010001011110100
0111          1001011100111100
1000          1010110000100110
1001          1001100111101110
1010          1100111001001110
1011          1111101110000110
1100          0110110010111010
1101          0101100101110010
1110          0000111011010010
1111          0011101100011010

0000          0000000000000000          Fourth four bits
0001          1111111101111000
0010          1101110011000110
0011          0010001110111110
0100          1001101100011110
0101          0110010001100110
0110          0100011111011000
0111          1011100010100000
1000          0001101111101100
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1001          1110010010010100
1010          1100011100101010
1011          0011100001010010
1100          1000000011110010
1101          0111111110001010
1110          0101110000110100
1111          1010001101001100

0000          0000000000000000          Fifth four bits
0001          0011100100111100
0010          0111000101010010
0011          0100100001101110
0100          1110001101010000
0101          1101101001101100
0110          1001001000000010
0111          1010101100111110
1000          1110100111011010
1001          1101000011100110
1010          1001100010001000
1011          1010000110110100
1100          0000101010001010
1101          0011001110110110
1110          0111101111011000
1111          0100001011100100

0000          0000000000000000          Sixth four bits
0001          1010011000100000
0010          0110111110110100
0011          1100100110010100
0100          1101001011111010
0101          0111010011011010
0110          1011110101001110
0111          0001101101101110
1000          1000110010001100
1001          0010101010101100
1010          1110001100111000
1011          0100010100011000
1100          0101111001110110
1101          1111100001010110
1110          0011000111000010
1111          1001011111100010

0000          0000000000000000          Seventh four bits
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0001          0100011010111110
0010          1000001110011000
0011          1100010100100110
0100          0010111111110010
0101          0110100101001100
0110          1010110001101010
0111          1110101011010100
1000          0101000011100100
1001          0001011001011010
1010          1101001101111100
1011          1001010111000010
1100          0111111100010110
1101          0011100110101000
1110          1111110010001110
1111          1011101000110000

000          0000000000000000           Last three bits
001          0000100001000010
010          0001001000001010
011          0001101001001000
100          0010001010100010
101          0010101011100000
110          0011000010101000
111          0011100011101010

The error-free pointer codeword: 0000000010010000111000111101010
is divided into seven sections of four bits each and one section of three
bits.  These bits are then used as indices into the pointer lookup table
(above) and the corresponding values are extracted and exclusive-or'd
(below).

0000          0000000000000000
0000          0000000000000000
1001          1001100111101110
0000          0000000000000000
1110          0111101111011000
0011          1100100110010100
1101          0011100110101000
  010          0001001000001010
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The results are the three five-digit syndromes below (the least significant
bit of the 16-bit integer is dropped).  The syndromes are all 0's because
the pointer codeword contained no errors.

The syndromes S1, S3 & S5 are:      00000 00000 00000

If we flip the bits in positions 0, 1 and 2, the pointer codeword becomes
0000000010010000111000111101101 and now contains three errors.
The values extracted from the pointer lookup table and exclusive-or'd
become:

0000          0000000000000000
0000          0000000000000000
1001          1001100111101110
0000          0000000000000000
1110          0111101111011000
0011          1100100110010100
1101          0011100110101000
  101          0010101011100000

The syndromes S1, S3 & S5 are:      00111 00011 10101

8.  BCH DECODER STEP 2 DESIGN DETAIL

8.1 TREE TRAVERSAL

        The values for S1, S2 and S3 derived from Step 1 are used in Step 2
to traverse the tree that is shown in Figure 3.  For a zero value of S1, the
lower branch is taken.  Otherwise the top branch is taken, A is calculated,
then either B or C is calculated depending on the value of A.  These
calculations involve using GF algebra to perform addition, multiplication,
inversion and exponentiation on the three syndromes.  These operations
are carried out using the GF algebra tables explained in Appendix, Section
5.3.  S13 or S15 is calculated by looking up the power of alpha (see Section
7.1) of S1 in the corresponding column (first column for exponentiation by
3, second column for exponentiation by 5) of the powers table.  For
addition and multiplication, the powers of alpha of the two values are
looked up in the addition and multiplication tables, respectively, and for
multiplication by an inverse, the powers of alpha of the two values are
looked up in the division table.
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     Since the power of alpha of a variable is used as often as the binary
value of the variable, a GF inverse table was created to speed the process
of obtaining the power of alpha value.  See Section 7.1 for more details on
how this table is used.

       After A and B or C are calculated as necessary, the tree traversal
arrives at one of eight error locator polynomial designations, EL1 through
EL8.  Each designation represents a polynomial shown at the bottom of
Figure 3.  The coefficients of these polynomials provide the coefficients for
the equation to be solved in Step 3.  These coefficients are known as Sigma
1, Sigma 2 and Sigma 3.  Sigma 1 is the coefficient of X1 in the polynomials.
Sigma 2 is the coefficient of X2 in the polynomials, and Sigma 3 is the
coefficient of X3 in the polynomials.  If the traversal arrives at position
EL8, for example, Sigma 1 will be the power of alpha of S1, Sigma 2 will be
((C * A-1) + (A * S1-1)), and Sigma 3 will be (C * A-1 * S1).  GF algebra is
used to calculate these values.  Coefficients not identified by the
polynomials are presumed to be 0.  For instance in the case of EL5, Sigma 2
and Sigma 3 would be 0.  The three Sigma values are the output of Step 2.

8.2 SAMPLE TREE TRAVERSAL

       Using the values of S1, S3, and S5 provided by the sample syndrome
calculation in Section 7.4, the tree traversal takes the path leading to EL8
and results in the values shown below for Sigma 1, Sigma 2 and Sigma 3.
Using the following values for S1, S3, S5, A, B, C and both the GF Table and
GF inverse table shown in Section 7.1, it is possible to see how EL8 is
selected.

S1 = 7
S3 = 3
S5 = 21
A= 7
B = 11
C = 8

EL8 Selected
EL8 = 1 + S1 * X + ((C * A-1) + (A * S1-1))X2 + C * A-1 * S1 * X3

Next the power of alpha values shown below and the GF algebra tables (see
Appendix, Section 5.3) are used to process EL8.
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Power of alpha(S1) = 11
Power of alpha(S3) = 18
Power of alpha(S5) = 22
Power of alpha(A) = 11
Power of alpha(B) = 27
Power of alpha(C) = 3

EL8 = 1 + 11 * X + ((3 * 11-1) + (11 * 11-1))X2 + 3 * 11-1 * 11 * X3

After GF algebra is applied,
EL8 = 1 + 11 * X + 12 * X2 + 3 * X3

Thus the values for Sigma 1, Sigma 2 and Sigma 3 are:  11 12 3

9.  BCH DECODER STEP 3 DESIGN DETAIL

9.1  CHIEN SEARCH

       The Chien Search is a relatively simple step that takes a long time to
execute.  This step applies the Sigma values from Step 2 to the equation
below:

               X3 + Sigma 1 * X2 + Sigma 2 * X + Sigma 3 = 0

and then tries each index in the GF table in place of X in the equation in
order to find the solution.  GF algebra is used to solve the equation.  For
three errors in the codeword, there will be three indices in the GF table
that solve the equation; for two errors there will be two successful indices;
there will be one successful index in the GF table for a codeword with one
error.

       After the error locations are discovered, the bits in those locations are
flipped and the corrected codeword is checked again for errors as in Step
1.  If the three syndromes are all zero this time, the correction was
successful.  If the three syndromes are not all zero, this means the
codeword had more than three errors and is uncorrectable.  In either case,
processing for this codeword is now complete.
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9.2 SAMPLE CHIEN SEARCH

       Using the three Sigma values from the earlier sample tree traversal,
11,12,3) the equation to be solved becomes:

                      X3 + 11 * X2 + 12 * X + 3 = 0

The GF Table for the pointer is searched for indices that will make this
equation true.  By looking at the pointer GF Table in Section 7.1, replacing
X with each index, and solving the equation using GF algebra, it is easy to
see that the values at index 0, 1 and 2 do solve this equation.

Index 0:  03 + 11 * 02 + 12 * 0 + 3 = 0
Using GF algebra to solve:      0 + 11 + 12 + 3 = 0
Values in GF table at index 0: 00001
                              11:  00111
                              12:  01110
                                  3:  01000
                           - - - - - - -
                               00000

Index 1:        13 + 11 * 12 + 12 * 1 + 3 = 0
Using GF algebra to solve:      3 + 13 + 13 + 3 = 0
Values in GF table at index 3:  01000
                              13:  11100
                              13:  11100
                                  3:  01000
                           - - - - - - -
                                 00000

Index 2:            23 + 11 * 22 + 12 * 2 + 3 = 0
Using GF algebra to solve:      6 + 15 + 14 + 3 = 0
Values in GF table at index 6:  01010
                                15:  11111
                                14:  11101
                                    3:  01000
                                - - - - - - -
                                  00000

It turns out that these are the only indices that solve this equation.  Thus
the errors in the pointer codeword must be at positions 0, 1 and 2.  But we
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know they are because these are the bits we flipped.  If these bit positions
are flipped back, we end up with the codeword with which we started:
0000000010010000111000111101010 and the same extracted and
exclusive-or'd values from the pointer lookup table:

        0000          0000000000000000
        0000          0000000000000000
        1001          1001100111101110
        0000          0000000000000000
        1110          0111101111011000
        0011          1100100110010100
        1101          0011100110101000
          010          0001001000001010

       The syndromes S1, S3 & S5 are:      00000 00000 00000

Since the three syndromes are zero when the corrected codeword is
checked for errors, we know the correct bits were flipped and we now
have an error-free codeword.  Thus processing for this codeword is
complete.

10.  ANALYSIS OF BCH DECODER PROTOTYPE RESULTS

10.1  STEP 1

10.1.1  EFFECT OF GROUPING SIZE ON PERFORMANCE RESULTS

       It was explained in Section 7.1 that using the partial sums lookup
tables results in fewer real-time exclusive-or's.  Obviously, if the grouping
size is larger, more of the exclusive-or'ing is done during initialization and
less during real-time.  It might be assumed, therefore, that the larger the
grouping size, the faster the processing time.  However, since a larger
grouping size results in a larger table size, it turns out that there is a point
of diminishing returns with regard to grouping and table size.  Once a table
size is larger than the machine cache size, page faults will occur when
values are accessed from all over the table.  If the table is large enough,
the time consumed by these page faults will be greater than the time
saved by doing most exclusive-or'ing during initialization.  The optimum
grouping size for the mission data turned out to be 8 and for the pointer
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data, the optimum grouping size was 16.  See Section 6 for performance
results.

10.1.2  POTENTIAL IMPROVEMENT

       The overlaying structure methodology for transposing the CADU's is
explained in Section 7.2.  I believe the code in Step 1 could be improved by
avoiding copying the CADU and simply using the overlaying structure
method to access the data from the CADU directly.  It would mean
changing the current design slightly because each mission codeword is
processed completely before the next mission codeword.  If the CADU were
accessed directly without copying, it would probably mean that one byte
from each mission codeword would be processed before the next byte from
each mission codeword.  It would also mean that the code would probably
be limited to a grouping size of 8 for the mission, as compared to now
when it has the flexibility to range from 4 to 16.

10.2  STEP 2

10.2.1  TREE TRAVERSAL ACCELERATED BY GF INVERSE TABLE

   One improvement was made to Step 2 midway through the prototyping
effort.  In the calculations required for the tree traversal, it is often
necessary to obtain the index of a particular value in the GF table.  When
Step 2 was first implemented, this index was obtained each time by
exhaustively searching the GF table.  An improvement was made, however,
in the creation of a GF inverse table (see Section 7.1).  In this way, the
index could be obtained immediately merely by using the original value as
an index into the GF inverse table.

10.2.2  POTENTIAL IMPROVEMENT

No future improvements to Step 2 are foreseen at this time.

10.3 STEP 3

10.3.1  IMPACT OF CORRECTING ACTUAL DATA
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        For the purposes of this prototype, the BCH decoder does not change
the actual input data.  In implementation, however, the actual data will
have to be corrected if there is an error and this will result in slower
speeds.

     It should be noted, however, that most CADU's will have no errors.
Those that do will most likely not be correctable.  For a codeword not to be
correctable, there must be noise that covers more than 24 contiguous bits.
Most of the time there will be either no noise or noise that covers more
than 24 contiguous bits; both instances in which we do not correct.  Thus
most of the time we will not be correcting actual data.

10.3.2  POTENTIAL IMPROVEMENT

       It is also possible some improvement in processing time can be
obtained in Step 3 by doing some of the calculations required for the Chien
Search ahead of time.  As each of the entries from the GF table are tried on
the error location polynomial to make it equal to 0 (see Section 9), some
calculations are required.  It is possible some of these calculations could be
done ahead of time (at the expense of memory, of course) so there would
be fewer real-time calculations required.  This has not been thoroughly
explored, but the possibility exists.
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APPENDIX

1 - Galois Field Algebra

Galois Field (GF) algebra is similar to high school algebra or arithmetic
except that GF operates within a finite field. For example, using base ten
integer arithmetic, take the element denoted 7, add the element denoted 8,
and obtain element 15. An integer added, subtracted, or multiplied to
another integer, always results with some element in the infinite set.
However, in GF algebra it is possible to take the element 7, add the
element 8, and obtain the resulting element only within a finite number of
elements. To learn about Galois Field algebra, we must first learn the
algebraic laws governing the Galois (or finite) field. These rules are the
standard algebraic laws. These laws may, however, become so familiar that
some may even have been forgotten.

A field is a set of elements in which addition, subtraction, multiplication,
and division can be done without leaving the set.

2 - Binary Fields GF(2)

At this point, we should have learned enough about fields and reviewed
enough of the basic algebraic laws to develop a finite field. To demonstrate
the idea of finite fields, we start off presenting the simplest case: modulo-2
arithmetic.

2.1 - Modulo-2 Addition, and Subtraction

Consider the set of two integers, F(0,1). Define a binary operation, denoted
as addition "+", on Galois as follows:

Modulo-2 addition

Addition 0 1
--- - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 1
1 1 0

This can be implemented with a single Exclusive-Or gate. This binary
operation is called modulo-2 addition.
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2.2 - Modulo-2 Multiplication, and Division

Because we have modulo-2 addition "+" defined over a binary group, let us
develop a binary field. Define modulo-2 multiplication. Consider the same
set of two integers, F(0,1). Define another binary operation, denoted as
multiplication ".", on F(0,1) as follows:

Modulo-2 Multiplication

Multiplication 0 1
--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 0
1 0 1

This can be implemented with a single AND gate. This binary operation is
called modulo-2 multiplication. This set F(0,1) is a field under modulo-2
addition and multiplication. Because we now know the underlying
algebraic structures to perform GF(2) arithmetic, let us talk about
extension fields. We are interested in prime finite fields called Galois Fields
GF(p). The previous binary operation had the minimum number of possible
elements that comprised GF(2). Extension fields are GF(pm), where m can
take the values 3, 4, 5,..... Therefore we will mainly speak of binary Galois
Fields GF(2) and the extended binary Galois Fields GF(2m).

3 - Primitive Polynomials

Polynomials over the binary field are any polynomials with binary
coefficients. They are binary polynomials. Each of these polynomials,
denoted as f(x), are simply the product of its irreducible factors. We can
create an extension field by creating a primitive polynomial p(x). A
primitive polynomial p(x) is defined to be an irreducible binary
polynomial of degree m that divides xn+1 for n = pm-1, which is equal to
2m-1 and which does not divide xi+1 for i is less than n. Once a primitive
polynomial p(x) is found, the elements of the Galois Field can be generated.
Any primitive polynomial p(x) can construct the pm = 2m unique
elements, including a 0 (zero or null) element and a 1 (one or unity)
element. A degree m polynomial f(x) over GF(2) is defined to be
irreducible over GF(2) if f(x) is not divisible by any polynomial over GF(2)
of degree greater than zero but less than m.

4 - Field Symbols (Alpha) i
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Any irreducible polynomial that divides xn+1 is a primitive polynomial
p(x), for example, for data pointer p(x) = x5 + x2 + 1 of degree m = 5. We
can now generate our Galois Field GF(pm) = GF(25) = GF(32). Because we
use the extension of GF(p) = GF(2), the null and unity elements in GF(2m)
are the same as the null and unity elements in GF(2). Now we set alpha (x)
= alpha = x to obtain the 5-tuple j4x4 + j3x3 + j2x2 + j1x + j0 for each
element alphai of GF(25). We have

alpha   = x1

alpha2 = x2

alpha3 = x3

alpha4 = x4

alpha5 = x5

What do we do now to change x5 into appropriate 5-tuple. We simply take
the modulo function of the result. For example alpha5 = alpha times alpha4

modulo p(x). One of the ways to perform this modulo function is to set our
fifth degree p(x) to zero and obtain the 5-tuple equivalent to x5. Working
this out we obtain: x5 = x2 + 1. Therefore, alpha to the fifth is equivalent to
alpha to the two plus one. Alpha to the sixth is equivalent to alpha to the
third plus one. In the same manner, all the 32 elements power of alpha
will be computed.

5 - Addition, and Subtraction, Multiplication, and Division within
GF(2m)

Addition in the extended Galois Field GF(2m) can be performed by one of
two methods. The most common method is by exclusive-oring the
elements' vector representations position by position. This is simply
performing modulo-2 addition. We are not using carry arithmetic. The
least common method is by adding their polynomial representations
together.

5.1 - Addition, and Subtraction Within GF(2 5) and GF(210)

 For example, addition of two elements within GF(25) is alpha2 + alpha8 =
00100 xor 01101 = 01001 = alpha29. Since subtraction is identical to
addition for example for the case of alpha4 and alpha8 we have:
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alpha4 + alpha8 =   alpha4 - alpha8

        = -alpha4 + alpha8

        = -alpha4 + alpha8

An addition table has been developed within GF(25) and GF(210) for (31,
16, 3) and (1023, 993, 3) BCH codes. Since alphai + alphaj = alphaj + alphai,
only half of the tables need to be filled.

5.2 - Multiplication and division within GF(2 m)

As in the case of addition and subtraction in GF(2m), we also have two
methods to perform multiplication and division. The most common method
is by summing the symbols' exponents modulo 2m-1 (or modulo n) and the
least common method is again the polynomial method. Using the exponent
mod n multiplication method we have:

alpha5 alpha2 = alpha5+2

    = alpha7

5.2.1 - Examples Using Mod 15 Within GF(2 4)

For multiplication we have:

alpha5 alpha14 = alpha5+14

      = alpha19

      = alpha19 mod 15
      = alpha4

Another method of performing the modulo function for multiplication or
division is to keep multiplying or dividing by alpha15, which is unity, until
we obtain a symbol within the finite field.

alpha5 alpha14 = alpha5+14

      = alpha19

      = alpha19mod 15
      = alpha19 / alpha15 for alpha15 = alpha-15 = alphao=1
      = alpha4
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Using the exponent mod n division method:

alpha5 / alpha2 = alpha5 alpha-2

      = alpha5+(-2)

      = alpha3

Using the exponent mod n division method for in inverse symbol alpha-i:

alpha5 / alpha14 = alpha5alpha-14

        = alpha5+(-14)

        = alpha-9

        = alpha-9 mod 15
        = alpha6

Multiplication is easily performed by adding the exponents modulo n and
noting alphai alpha -infinity = (alphai) (0) = 0.

5.3 - Addition, Multiplication, Powers, and Inverse Within
GF(25) for Data Pointer and GF(2 10) for Mission Data

5.3.1 - Addition Within GF(2 5) and GF(210)

Addition within GF(25), and GF(210) can be performed by exclusive - oring
the elements' binary representations position by position. This is done by
performing modulo - 2 addition. For example, using the two elements
alpha27, and alpha19 of GF(25) We have:

alpha27 = 01011
alpha19 = 00110
--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
alpha27 xor  alpha19 = 01101 = alpha8

Where the field was generated from the following minimum polynomial

Alpha5 + alpha2 + 1.
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Quantities belonging to the field GF(2m) are usually stored and
manipulated as m bit computer words. The 2m elements of any such Glois
Field can be written as powers of alpha, where alpha is a primitive
element of the field.

Addition tables within GF(25), and GF(210) for data pointer and mission
data, respectively, will be generated and used in the computation. An
addition table within GF(25) is a precomputed table of all the elements
within the field of GF(25). The entries in the table are precomputed, and
are illustrated below:

[Addition table printed from the output of the program goes here]

5.3.2 - Multiplication within GF(2 5) and GF(210)

As in the case of addition in GF(2m), m=5 and m=10 also have a method to
perform multiplication. The most common method is by summing the
elements' exponents modulo 2m-1 (or modulo n), where n is the length of
the code word. The n and m are related through n = 2m-1. For m=5 and
m=10, the value of n is 31 and 1023. The following example uses the
exponent mod n multiplication method. Using the two elements alpha27

and alpha19 of GF(25) we have:

alpha27 * alpha19 = alpha27+19 = alpha46

alpha46 mod 31 = alpha46 / alpha31 = alpha15

alpha31 = alpha-31 = 1 / alpha31 = alpha0 = 1

The method of performing the modulo function for multiplication (or
division) is to keep multiplying (or dividing) by alpha31, which is unity,
until we obtain an element within the finite field GF(25) for pointer and
GF(210) for mission data.

The field of GF(25) has 31 elements, including zero. Zero has an alpha
representation of a power equal to minus infinity. One has an alpha
representation of a power equal to zero. The powers of alpha will roll over
at 31 to value one.

32 November 18, 1994



Multiplication table within GF(25) is a precomputed table of all the
elements within the field of GF(25). The entries in the table are
precomputed and they are illustrated below:

[Multiplication table goes here]

5.3.3 - Powers within GF(2 5) and GF(210)

This computation is a special case of the multiplication within the fields.
The equation for computing the Elementary Symmetric Functions uses
powers of syndromes. Using the exponent mod n multiplication, powers of
all the elements within the fields can be computed. Using the element
alpha27 within GF(25) we have:

alpha27 * alpha27 = (alpha27)2 = alpha54

alpha54 mod 31 = alpha54 / alpha31 = alpha54 * alpha-31 = alpha23

5.3.4 - Inverse Within GF(2 5) and GF(210)

The inverse of an element within the field is computed as follows:
For example, the inverse of alpha27 within GF(25) is:

1 / alpha27 = alpha31 / alpha27 = alpha31 * alpha-27 = alpha31+(-27) =
alpha4. alpha4 is an element within the field.

Division within the fields uses inverse and multiplication within the fields.
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